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Introduction to Combustion

§ The purpose of this lecture is to:
• Introduce the basic physical concepts used to describe 

combustion phenomena
Ø Gas/liquid/solid-fueled combustion; flaming vs non-flaming 

combustion; premixed vs non-premixed/diffusion flame; momentum-
driven vs buoyancy-driven flame; laminar vs turbulent flame

Ø Coupling between pyrolysis and combustion: thermal feedback; mass 
loss rate (MLR) vs heat release rate (HRR); thermal degradation 
processes inside the solid biomass (drying, pyrolysis, char oxidation) 
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Introduction to Combustion

§ The purpose of this lecture is to:
• Introduce the basic physical concepts used to describe 

combustion phenomena
Ø Global combustion equation model; over-ventilated vs under-

ventilated fire conditions
Ø Combustion chemistry; infinitely fast chemistry assumption
Ø Structure of diffusion flames: mixture fraction variable; correlations 

for flame height; air entrainment; transport of combustion heat 
through convection, thermal radiation and firebrands; emissions of 
chemical species, including soot particles
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Ignition and Combustion

§ Fire spread 
• A repeated cycle of: (1) heating; (2) 

production of flammable vapors by 
the thermal degradation of vegetation 
biomass; and (3) combustion of these 
flammable vapors with ambient air

Ø Pyrolysis = production of flammable 
vapors from thermally-degrading 
solid-phase vegetation biomass

Ø Ignition = start of pyrolysis or start 
of combustion

Ø Combustion = gas-phase oxidation of 
flammable vapors with heat release

Heating

Pyrolysis

Burnout

Spread
Combustion
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Introduction to Combustion

§ Basic features
• Source of oxygen (oxidizer): ambient air
• Source of fuel (hydrocarbons): gas/liquid/solid

Ø From thereon assume solid fuel (vegetation biomass) 

Liquid fuel Gaseous fuelSolid fuel FIRE
FIRE

ENGINE
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Introduction to Combustion

§ Basic features
• Non-flaming combustion mode 

(glowing/smoldering combustion): 
solid-gas phase reactions
• Flaming combustion mode: gas-

phase reactions
Ø From thereon assume flaming 

combustion 



A. Trouvé, Summer School on Fire Safety Science - 2023 Combustion – Slide 8

Introduction to Combustion

§ Basic features
• Flaming vs non-flaming combustion modes in flame spread

• Experiment performed 
at Missoula Fire 

Sciences Laboratory, 
USDA Forest Service

• Inclined surrogate fuel 
bed corresponding to 
an array of carboard 

sticks
(Courtesy of M. Finney)
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Introduction to Combustion

§ Basic features
• Premixed flame: fuel and air are mixed 

prior to entering the combustion zone 

flame

Fuel/Air supply tube

Fuel + Air

Premixed
flame
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Introduction to Combustion

Non-premixed
flame

Fuel

flame

Fuel supply tube

Air

§ Basic features
• Non-premixed/diffusion flame: fuel and 

air remain separated prior to entering 
the combustion zone
Ø From thereon assume non-premixed flame
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Introduction to Combustion

§ Basic features
• High-velocity fuel release: momentum-driven flame
• Low-velocity fuel release: buoyancy-driven flame

Ø From thereon assume buoyancy-driven flame

small fuel velocity/large diameter
low Froude number

large fuel velocity/small diameter
high Froude number

𝐹𝑟 =
𝑢!"#$
𝑔𝐿!$%&#

~
𝑚𝑜𝑚𝑒𝑡𝑢𝑚
𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦
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Introduction to Combustion

§ Basic features
• Low-Reynolds-number flow: laminar flame
• High-Reynolds-number flow: turbulent flame

Ø From thereon assume turbulent flame

small fuel velocity/small diameter
low Reynolds number

large fuel velocity/large diameter
large Reynolds number

𝑅𝑒 =
𝑔𝐿!$%&#×𝐿!$%&#

(𝜇/𝜌)
~
𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛
𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛
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Introduction to Combustion

§ Basic features
• Flames are sensitive to their 

environment (wind, terrain topography)
Ø Two limiting flame regimes: the 

plume-dominated regime in which the 
flame is mostly detached from the 
vegetation bed; and the wind-driven or 
slope-driven regime in which the 
flame is attached to the vegetation bed 

Ø From thereon assume flame under no 
wind and flat terrain conditions
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Flame Structure

§ Main features
• Fuel is flammable vapors produced by 

pyrolysis of vegetation biomass (𝑇' ≥
500 − 600	K)
• Fuel reacts with ambient air; combustion 

occurs in flaming mode 
(𝑇!$%&#~	2000	K)

• Flame is non-premixed
• Fuel source velocity is small (~0.1-1 

cm/s); buoyancy effects accelerate the 
flow up to several m/s
• Flow regime corresponds to moderate-to-

high turbulence intensities

Fuel

Diffusion
Flame

air air

Plume
overfire
region

underfire
region

D
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Pyrolysis and Combustion

§ Fire is an uncontrolled combustion process characterized by 
coupled solid-gas phase phenomena
• Typical production of flammable vapors in a fire

§ Consider a flammable solid object/material that is a potential fuel source
§ At ambient temperature, the fuel is in solid form, the oxygen (from air) in 

gaseous form, and there is no combustion
§ At moderately elevated temperatures (~200-400 degrees Celsius), a 

complex thermal degradation process is initiated in the solid object/material, 
that corresponds to a phase change and produces fuel in gaseous form. This 
gasification process is called pyrolysis.

Heat
Gaseous
fuel mass

Solid Fuel

Ambient air
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Pyrolysis and Combustion

§ Fire is an uncontrolled combustion process characterized by a 
thermal feedback loop
• Typical production of flammable vapors in a fire

§ Fuel gasification is an endothermic process and heat comes from the gas-to-
solid heat transfer; the fuel gasification rate is controlled by the rate of gas-
to-solid heat transfer (called the heat/thermal feedback)

�̇�!"#$
(( ×∆𝐻)*+,$*'-'

        ≈ (�̇�.,/0(( + �̇�+%1(( )
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Pyrolysis and Combustion

§ The fuel mass loss rate (MLR) [kg/s]
• A property of the fuel source
• Characterizes the intensity of the pyrolysis process

�̇�!"#$
(( ≈

(�̇�.,/0(( + �̇�+%1(( )
∆𝐻)*+,$*'-'

Heat
Gaseous
fuel mass

Solid Fuel

Ambient air

�̇�!"#$ = K
2!"#$

�̇�!"#$
(( 𝑑𝐴!"#$ ≈

∬2!"#$(�̇�.,/0
(( + �̇�+%1(( ) 𝑑𝐴!"#$
∆𝐻)*+,$*'-'
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Pyrolysis and Combustion

§ The heat release rate (HRR) [W]
• A property of the flame
• Characterizes the intensity of the combustion process

�̇�!-+# = �̇�!"#$×∆𝐻.,&3"'4-,/
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Pyrolysis

§ Thermally-driven decomposition of vegetation biomass
• Drying reaction
1	𝑘𝑔	𝑤𝑒𝑡	𝑠𝑜𝑙𝑖𝑑 → (𝜂!!",$%	𝑘𝑔	𝑤𝑎𝑡𝑒𝑟	𝑣𝑎𝑝𝑜𝑟) + (𝜂%&,$%	𝑘𝑔	𝑑𝑟𝑦	𝑠𝑜𝑙𝑖𝑑)

• Thermal/oxidative pyrolysis reactions (production of fuel)
1	𝑘𝑔	𝑑𝑟𝑦	𝑠𝑜𝑙𝑖𝑑 → (𝜂',$(	𝑘𝑔	𝑓𝑢𝑒𝑙) + (𝜂),$(	𝑘𝑔	𝑐ℎ𝑎𝑟)
1	𝑘𝑔	𝑑𝑟𝑦	𝑠𝑜𝑙𝑖𝑑 + 𝜂"!,$*(	𝑘𝑔	𝑂+ → 𝜂',$*(	𝑘𝑔	𝑓𝑢𝑒𝑙 + 𝜂),$*(	𝑘𝑔	𝑐ℎ𝑎𝑟

• Char oxidation reaction
(1	𝑘𝑔	𝑐ℎ𝑎𝑟) + (𝜂"!,$)*	𝑘𝑔	𝑂+) → (𝜂(,$)*	𝑘𝑔	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) + (𝜂,,$)*	𝑘𝑔	𝑎𝑠ℎ)
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Pyrolysis

§ Thermally-driven decomposition of vegetation biomass
• Input data

Thermal properties of wet solid 𝜌!,#! , 𝑘!,#! , 𝑐!,#! , 𝜀#!
Thermal properties of dry solid 𝜌!,$! , 𝑘!,$! , 𝑐!,$! , 𝜀$!

Thermal properties of char 𝜌!,% , 𝑘!,% , 𝑐!,% , 𝜀%
Thermal properties of ash 𝜌!,& , 𝑘!,& , 𝑐!,& , 𝜀&

Porosity and permeability of wet solid 𝜓#! , 𝐾#!
Porosity and permeability of dry solid 𝜓$! , 𝐾$!

Porosity and permeability of char 𝜓% , 𝐾%
Porosity and permeability of ash 𝜓& , 𝐾&

Drying reaction 𝐴'$ , 𝐸'$ , 𝑛'$ , ∆𝐻'$ , 𝜂$!,'$
Thermal pyrolysis reaction 𝐴'( , 𝐸'( , 𝑛'( , ∆𝐻'( , 𝜂%,'(

Oxidative pyrolysis reaction 𝐴')( , 𝐸')( , 𝑛')( , 𝑛*!,')( , ∆𝐻')( , 𝜂%,')( , 𝜂*!,'%(
Char oxidation reaction 𝐴'%) , 𝐸'%) , 𝑛'%) , 𝑛*!,'%) , ∆𝐻'%) , 𝜂&,'%) , 𝜂*!,'%)
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Pyrolysis

§ Basic study of phenomenology; evaluation of 
MLR and/or model input data
• Micro-scale experiments (e.g. Thermogravimetric 

Analysis – TGA, Differential Scanning Calorimetry – 
DSC, Microscale Combustion Calorimetry – MCC) 

• Bench-scale experiments (e.g., cone calorimeter, Fire 
Propagation Apparatus – FPA)

• Fuel package experiments
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Pyrolysis

§ Example of results from cone calorimeter test (model)
• Example: white pine (Lautenberger & Fernandez-Pello, Combust. Flame 

156:1503-1513 (2009)

Δ = 3.8	cm 
𝐺 = 40	kW/m2 
𝑥5%,7 = 0.21 
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Pyrolysis

§ Example of results from cone calorimeter test (model)
• White pine (Lautenberger & Fernandez-Pello, Combust. Flame 

156:1503-1513 (2009))

Δ = 3.8	cm 
𝐺 = 40	kW/m2 
𝑥5%,7 = 0.21 
𝒕 = 𝟏𝟎𝟎	s

Exposed
surface
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Pyrolysis

§ Example of results from cone calorimeter test (model)
• White pine (Lautenberger & Fernandez-Pello, Combust. Flame 

156:1503-1513 (2009))

Δ = 3.8	cm 
𝐺 = 40	kW/m2 
𝑥5%,7 = 0.21 
𝒕 = 𝟏𝟎𝟎	s

Exposed
surface
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Pyrolysis

§ Example of results from cone calorimeter test (model)
• White pine (Lautenberger & Fernandez-Pello, Combust. Flame 

156:1503-1513 (2009))

Δ = 3.8	cm 
𝐺 = 40	kW/m2 
𝑥5%,7 = 0.21 
𝒕 = 𝟏𝟎𝟎	s

Exposed
surface

𝜹𝑹𝑹 = 𝑶(𝟏	mm)
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§ Global combustion equation
• Black box model

Ø written for 1 mole of fuel

where 𝛽 = (𝑛.!/𝑛"!),/0

Ø or written for 1 kg of fuel

where 𝛽∗ = ((𝑛.!𝑀𝑊.!)/(𝑛"!𝑀𝑊"!)),/0

heat +

Air

Fuel

Products

𝐹 + 𝑟F 𝑂G + 𝛽∗𝑁G ⟶𝜂IJ!𝐶𝑂G + 𝜂K!J𝐻G𝑂 + (𝑟F𝛽
∗)𝑁G

𝐹 + 𝜈J! 𝑂G + 𝛽𝑁G ⟶ 𝜈IJ!𝐶𝑂G + 𝜈K!J𝐻G𝑂 + (𝜈J!𝛽)𝑁G
airfuel products (+ heat)

(+ heat)

Combustion
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§ Global combustion equation
• Assume 𝐹 = 𝐶L𝐻M𝑂N (known)

Ø for 1 mole of fuel

Ø Conservation of C, H, O and N atoms

heat +

Air

Fuel

Products

𝐹 + 𝜈J! 𝑂G + 𝛽𝑁G ⟶ 𝜈IJ!𝐶𝑂G + 𝜈K!J𝐻G𝑂 + (𝜈J!𝛽)𝑁G
airfuel products (+ heat)

𝜈85% = 𝑛	; 	 𝜈9%5=
𝑚
2
	; 	 𝜈5% = 𝑛 +

𝑚
4
−
𝑝
2
	; 	 𝜈:% = 𝜈5%×𝛽

Combustion
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§ Global combustion equation
• Assume 𝐹 = 𝐶L𝐻M𝑂N (known)

Ø for 1 kg of fuel

Ø Conservation of C, H, O and N atoms

heat +

Air

Fuel

Products

𝜂85% =
𝜈85%𝑀𝑊85%

𝑀𝑊;
	 ; 	 𝜂9%5 =

𝜈9%5𝑀𝑊9%5

𝑀𝑊;
; 	 𝑟< =

𝜈5%𝑀𝑊5%
𝑀𝑊;

𝐹 + 𝑟F 𝑂G + 𝛽∗𝑁G ⟶𝜂IJ!𝐶𝑂G + 𝜂K!J𝐻G𝑂 + (𝑟F𝛽
∗)𝑁G

airfuel products (+ heat)

Combustion
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§ Global combustion equation
• Assume 𝐹 = 𝐶L𝐻M𝑂N (known)

Ø for 1 kg of fuel

Ø Heat of combustion (per unit mass of fuel)

heat +

Air

Fuel

Products

𝐹 + 𝑟F 𝑂G + 𝛽∗𝑁G ⟶𝜂IJ!𝐶𝑂G + 𝜂K!J𝐻G𝑂 + (𝑟F𝛽
∗)𝑁G

airfuel products (+ heat)

∆𝐻O = 𝑟F×∆𝐻J!
∆𝐻J! ≈ 13.1	MJ/kg[𝑂G]

Combustion
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§ Global combustion equation
• Stoichiometric conditions

Ø The proportions of fuel and oxygen are those required by the 
combustion equation

Ø All the fuel and oxygen mass are consumed by the combustion 
process

Ø Corresponds to a chemical optimum: maximum emissions of carbon 
dioxide/water vapor as well as maximum heat release (maximum 
flame temperature)

Combustion
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§ Idealized combustion equation
• Non-stoichiometric conditions

Combustion

𝜙 =
(𝑚O

P /𝑚J!
P )

(𝑀𝑊O/(𝜈J!𝑀𝑊J!))
= 𝑟F(

𝑌OP

𝑌J!
P )

𝜙 =
(𝑛OP /𝑛J!

P )
(1/𝜈J!)

= 𝜈J!(
𝑥OP

𝑥J!
P )

Equivalence ratio
(control volume analysis)
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§ Idealized combustion equation
• Fuel lean (fuel-limited, over-ventilated) conditions

ØThere is more oxygen than required by the combustion chemistry
ØAll the fuel mass is consumed by the combustion process; there is 

some excess oxygen mass in the products

Combustion

𝜙 ≤ 1
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§ Idealized combustion equation
• Fuel lean (fuel-limited, over-ventilated) conditions

 

Combustion

⟶ 𝜈IJ!𝐶𝑂G + 𝜈K!J𝐻G𝑂 + (
𝜈J!
𝜙 𝛽)𝑁G + (

𝜈J!
𝜙 − 𝜈J!)𝑂G

excess oxygen

𝐹 + (
𝜈J!
𝜙 ) 𝑂G + 𝛽𝑁G
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§ Idealized combustion equation
• Fuel rich (oxygen-limited, under-ventilated) conditions

ØThere is less oxygen than required by the combustion chemistry
ØAll the oxygen mass is consumed by the combustion process; there is 

some excess fuel mass in the products

Combustion

𝜙 ≥ 1
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§ Idealized combustion equation
• Fuel rich (oxygen-limited, under-ventilated) conditions

 

Combustion

⟶ (
𝜈IJ!
𝜙 )𝐶𝑂G + (

𝜈K!J
𝜙 )	𝐻G𝑂 + (

𝜈J!
𝜙 𝛽)𝑁G + (1 −

1
𝜙)𝐹

excess fuel

𝐹 + (
𝜈J!
𝜙 ) 𝑂G + 𝛽𝑁G



A. Trouvé, Summer School on Fire Safety Science - 2023 Combustion – Slide 41

§ Idealized combustion equation
• Limitations

Ø Under high temperature conditions, CO2 and H2O experience 
chemical dissociations (i.e. breakdown of large molecules into 
smaller molecules and atoms); combustion products include CO2 and 
H2O, as assumed so far, but also additional minor species (CO, H2, 
OH, H, O, etc)

Ø Excess fuel mass present in fuel-rich combustion does not remain as 
virgin fuel, as assumed so far, but decomposes into CO, H2, and also 
other hydrocarbon species (uHC), and soot

Combustion
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• Calculation of equilibrium mixture composition with state-
of-the-art software (CHEMKIN, Cantera, etc)

maximum product yield
near f = 1

excess O2 excess F

Combustion
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• Calculation of adiabatic flame temperature with state-of-the-
art software (CHEMKIN, Cantera, etc): measure of heat released 
by combustion process

Combustion

maximum temperature
near f = 1
maximum temperature
~ 2,200-2,300 K
for most practical fuels
(STPC)
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§ Global combustion equation
• A black-box model

Ø Describes the inputs and outputs of the combustion transformation
Ø Also a statement on global mass (and energy) conservation
Ø But not a statement on the speed of combustion

– The speed of combustion is described in studies of combustion 
chemical kinetics and/or flame studies

heat +

Air

Fuel

Products

Combustion
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§ Detailed chemical kinetic mechanism
• A “first-principles” description of combustion chemistry 

(elementary reactions)
Ø A series of statements about probable outcome of collisions between 

molecules at the quantum level
Ø Based on the kinetic theory of gases (statistical thermodynamics) 
Ø Provides estimates of the reaction rates (RR) for each elementary 

reaction (i.e., estimates of the speed of combustion)

Chemistry
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§ Detailed chemical kinetic mechanism
• Reaction rate (RR) of an elementary bimolecular reaction

Ø Kinetic theory of gases

𝑅Q +𝑅G ⟶𝑃Q + 𝑃G

−
𝑑𝐶R"
𝑑𝑡 ~ 	

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	𝑜𝑓𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑠
𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑅Q	𝑎𝑛𝑑	𝑅G

	 × 	
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑎

𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙	𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛	

~	𝐶R"𝐶R! ~exp −𝐸S/𝑅𝑇

−
𝑑𝐶R"
𝑑𝑡 ~𝐶R"𝐶R!×𝑘(𝑇)

RR coefficient

activation energy

Chemistry
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§ Detailed chemical kinetic mechanism
• Reaction rate (RR) of an elementary bimolecular reaction

ØArrhenius model

𝑘 𝑇 = 𝐴𝑇T exp(− U#
RV
)

pre-exponential
factor

temperature
exponent

𝑅Q +𝑅G ⟶𝑃Q + 𝑃G

activation
energy [J/mol]

Chemistry
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§ Detailed chemical kinetic mechanism
• Reaction rate (RR) of an elementary bimolecular reaction

ØArrhenius model: RR varies exponentially with temperature

𝑅Q +𝑅G ⟶𝑃Q + 𝑃G

−
𝑑𝐶R"
𝑑𝑡 = 𝐶R"𝐶R!×𝐴𝑇

T exp(−
𝐸S
𝑅𝑇)

where	 𝐶W = (𝑥W
𝑝
𝑅𝑇) = (𝑌W

𝜌
𝑀𝑊W

)

Chemistry
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§ Arrhenius model applied to global combustion 
equation (example: propane-air combustion)

• Reaction rate [mol/cm3/s] (C.K. Westbrook, F.L. Dryer, Combustion 
Science and Technology 1981)

• Heat release rate [W/m3]

−
𝑑𝐶I$K%
𝑑𝑡 = 𝐶I$K%

X.Q 𝐶J!
Q.Z[×8.6×10QQ exp(−

15,098
𝑇 )

𝐶\𝐻] + 5 𝑂G + 𝛽𝑁G ⟶3𝐶𝑂G + 4𝐻G𝑂 + (5𝛽)𝑁G

�̇�^_MT`abP_Lccc = (−
𝑑𝐶I$K%
𝑑𝑡 )×𝑀𝑊I$K%×10

Z×∆𝐻I$K%

Chemistry
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§ Arrhenius model
• High temperatures correspond to (exponentially) fast 

chemistry

exp(−
𝐸2
𝑅𝑇
) 	𝑣𝑠	𝑇

Chemistry



A. Trouvé, Summer School on Fire Safety Science - 2023 Combustion – Slide 52

Flame Structure

§ Main features
• Flame topology corresponds to a thin 

surface (sheet)
• Burning rate limited by diffusion of fuel 

and air into the flame surface 
(combustion chemistry is usually very 
fast)
• The flame structure is characterized in 

terms of a mixing variable called the 
mixture fraction

Fuel

Diffusion
Flame

air air

Plume
overfire
region

underfire
region

D



A. Trouvé, Summer School on Fire Safety Science - 2023 Combustion – Slide 53

Outline

§ Introduction
§ Pyrolysis and Combustion
§ Combustion: the Thermodynamics Viewpoint
§ Combustion Chemistry
§ Flame Structure
§ Flame Effects
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§ Mixture fraction
• Non-dimensional variable 𝑍 used to describe the mixture 

composition
• Field variable, 𝑍(𝑥, 𝑦, 𝑧, 𝑡), defined as the local fraction of 

mass that originates from the fuel supply stream 
(convention: 𝑍 = 1 in pure fuel; 𝑍 = 0 in pure air)

Flame Structure

𝑍 =
𝑟a𝑌O − 𝑌J! + 𝑌J!,ePf

𝑟a + 𝑌J!,ePf
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§ Mixture fraction
• Assuming combustion chemistry to be infinitely fast

Ø The flame topology corresponds to a surface (i.e. a front or a sheet)
Ø The flame is located where fuel and oxygen mass meet in 

stoichiometric proportions, at 𝑍 = 𝑍'4

Flame Structure

𝑍'4 =
𝑌5%,%-+

𝑟' + 𝑌5%,%-+

Ø Fuel and oxygen mass do not 
coexist (𝑌;×𝑌5% = 0)

Fuel side

Air side

Flame surface
𝑌; = 𝑌5% = 0	(𝑍 = 𝑍'4)

𝑌2 = 0	(𝑍 < 𝑍&3)

𝑌"! = 0	(𝑍 > 𝑍&3)
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§ Mixture fraction
• Description of mixture composition in terms of the mixture fraction 

(Burke-Schumann model)

Flame Structure

0 1
0

1

𝑌IJ!

𝑌K!J
𝑌J!

𝑌O

𝑍ab
𝑍

𝜂85%𝑍'4

𝜂9%5𝑍'4

𝑌5%,%-+
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§ Mixture fraction
• Description of temperature in terms of the mixture fraction (Burke-

Schumann model with assumption of adiabatic combustion)

Flame Structure

0 1𝑍ab
𝑍

𝑇ab

𝑇=
𝑇>

0
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§ Mixture fraction
• Field variable, 𝑍(𝑥, 𝑦, 𝑧, 𝑡) , 

solution of an unsteady 
convection-diffusion equation
• Characteristic length scale of the 

flame geometry: the mean flame 
height 𝐿l
• Characteristic time scale of the 

flame: the mean flame residence 
time ~ (𝐿l/ 𝑔𝐿l)	= 𝐿l/𝑔

Flame Structure

Fuel
air

𝑍 = 𝑍'4

𝑍 < 𝑍'4

𝑍 > 𝑍'4

𝐿l

𝑍 = 0
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§ Mean flame height (pool fire configuration)

Flame Structure

low Froude number

high Froude number

𝐹𝑟 =
𝑢!"#$
𝑔𝐷!"#$

~
𝑚𝑜𝑚𝑒𝑡𝑢𝑚
𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦

Buoyancy-
controlled flame

Momentum-
controlled flame

Scaling independent
of 𝐹𝑟

Non-dimensional
flame length

~𝐹𝑟?.A

𝐹𝑟

(𝐿!/𝐷!"#$)
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§ Mean flame height (pool fire configuration)
• For fire applications (buoyancy-controlled flames, small 

values of 𝐹𝑟 ), flame length correlations based on the 
following Q-star parameter

Flame Structure

�̇�∗ =
�̇�lPfn

(𝜌𝑐N𝑇)ePf 𝑔𝐷l`no𝐷l`noG
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§ Mean flame height (pool fire config.)
• Correlation (Heskestad)

Flame Structure

Buoyancy-
controlled flame

Momentum-
controlled flame

small Q*regime

(1 ≤ �̇�∗ < 10C)

(
𝐿l
𝐷l`no

) = 3.7×�̇�∗G/[ − 1.02

𝐿l = 0.235×�̇�lPfn
G/[ − 1.02×𝐷l`no

(�̇�!-+# 	in	kW)

(𝐿'/𝐷'456)
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§ Ideal buoyant plume (pool fire config.)
• Axisymmetric geometry
• Point source release of heat
    (far field plume theory)
• “Fire induced wind”: 𝑢n 𝑧 = 𝛼×𝑤(𝑧),
    empirical entrainment factor 𝛼

Plume Structure

�̇�!-+#

𝑤 𝑧 , 𝑇(𝑧)

𝑏(𝑧)

𝑧
𝑢#(𝑧)

(𝛼	~	0.1−0.2)
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§ Ideal buoyant plume (pool fire config.)

Plume Structure

𝑏 𝑧 = 𝐶3×𝑧

𝐶3 =
6𝛼
5
;	 𝐶D = (

25
48𝜋𝛼=

𝑔
(𝜌𝑐)𝑇)%-+

)>/F

𝑤 𝑧 = 𝐶D×�̇�!-+#
>/F ×𝑧G>/F

�̇�!-+#

𝑤 𝑧 , 𝑇(𝑧)

𝑏(𝑧)

𝑧
𝑢#(𝑧)

𝑇 𝑧 − 𝑇%-+
𝑇%-+

= 𝐶H×�̇�!-+#
=/F ×𝑧GC/F

𝐶H =
1

𝜋𝐶3=𝐶D(𝜌𝑐)𝑇)%-+
; 	 𝐶&̇ =

1
𝐶H(𝑐)𝑇)%-+

�̇�J 𝑧 = 𝜌 𝜋𝑏= 𝑤 = 𝐶&̇×�̇�!-+#
>/F ×𝑧C/F
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§ McCaffrey correlations (pool fire config.)
• Description of near-field/flame region as well as far-field/plume region

𝑤78 𝑧 = 6.8×𝑧9/+,      𝑧 < (0.08×�̇�'/05
+/; )

𝑤78 𝑧 = 1.9×�̇�'/05
9/; ,      (0.08×�̇�'/05

+/; ) ≤ 𝑧 ≤ (0.2×�̇�'/05
+/; )

𝑤78 𝑧 = 1.1×�̇�'/05
9/< ×𝑧=9/<,     (0.2×�̇�'/05

+/; ) < 𝑧

Plume Structure

(�̇�+,-. 	in	kW)

continuous
flame

intermittent
flame

plume

𝑤8K

𝑧
𝐿'

~	𝑧>/= ~	𝑧G>/F
~	𝑧?
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§ McCaffrey correlations (pool fire config.)
• Description of near-field/flame region as well as far-field/plume region

∆𝑇78 𝑧 = 𝑇78 𝑧 − 𝑇,/0 = 850,    𝑧 < (0.08×�̇�'/05
+/; )

∆𝑇78 𝑧 = 𝑇78 𝑧 − 𝑇,/0 = 67×�̇�'/05
+/; ×𝑧=9,  (0.08×�̇�'/05

+/; ) ≤ 𝑧 ≤ (0.2×�̇�'/05
+/; )

∆𝑇78 𝑧 = 𝑇78 𝑧 − 𝑇,/0 = 22×�̇�'/05
+/< ×𝑧=;/<, (0.2×�̇�'/05

+/; ) < 𝑧

Plume Structure

(𝑇/0 	in	K, �̇�+,-. 	in	kW)

continuous
flame

intermittent
flame

plume

∆𝑇8K

𝑧
𝐿'

~	𝑧G>

~	𝑧GC/F

~	𝑧?
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§ McCaffrey correlations (pool fire config.)
• Description of near-field/flame region as well as far-field/plume region

�̇�>,78 𝑧 = 0.011×�̇�'/05×(𝑧/�̇�'/05
+/; )?.;AA,  𝑧 < (0.08×�̇�'/05

+/; )

�̇�>,78 𝑧 = 0.026×�̇�'/05×(𝑧/�̇�'/05
+/; )?.B?B,  (0.08×�̇�'/05

+/; ) ≤ 𝑧 ≤ (0.2×�̇�'/05
+/; )

�̇�>,78 𝑧 = 0.124×�̇�'/05×(𝑧/�̇�'/05
+/; )9.CB;,  (0.2×�̇�'/05

+/; ) < 𝑧

Plume Structure

(�̇�+,-. 	in	kW)

continuous
flame

intermittent
flame

plume

�̇�J,8K

𝑧
𝐿'

~	𝑧L?L

~	𝑧>.MLC

~	𝑧?.CNN
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§ Mean flame height (line fire 
configuration)
• 2D plane geometry
• Fire intensity: HRR per unit 

length of fireline [W/m], 
�̇�lPfnc

• Buoyant flames
(Byram 1959) (Yuan & Cox 1996)

Flame Structure

𝐿l = 0.034×(�̇�lPfnc )G/\

(�̇�!-+#( 	in	kW/m)

𝑢#(𝑧)

�̇�!-+#(

𝑤 𝑧 , 𝑇(𝑧)

𝑏(𝑧)

𝑧
𝑢#(𝑧)

𝐿l = 0.0775×(�̇�lPfnc )X.�Z
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§ Ideal buoyant plume (line 
fire configuration)
• Two-dimensional plane 

geometry
• Line source release of heat
    (far field plume theory)
• “Fire induced wind”: 
𝑢n 𝑧 = 𝛼×𝑤 𝑧 , empirical 
entrainment factor 𝛼

Plume Structure

(𝛼	~	0.1−0.2)

𝑢#(𝑧)

�̇�!-+#(

𝑧

𝑤 𝑧 , 𝑇(𝑧)

𝑏(𝑧)

𝑧
𝑢#(𝑧)
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§ Ideal buoyant plume (line fire configuration)

Plume Structure

𝑏 𝑧 = 𝐶3×𝑧

𝐶3 = 𝛼;	 𝐶D = (
1
2𝛼

𝑔
(𝜌𝑐)𝑇)%-+

)>/F

𝑤 𝑧 = 𝐶D×(�̇�!-+#( )>/F

𝑇 𝑧 − 𝑇%-+
𝑇%-+

= 𝐶H×(�̇�!-+#( )=/F×𝑧G>

𝐶H =
1

2𝐶3𝐶D(𝜌𝑐)𝑇)%-+
; 	 𝐶&̇& =

1
𝐶H(𝑐)𝑇)%-+

�̇�J
( 𝑧 = 𝜌 2𝑏 𝑤 = 𝐶&̇&×(�̇�!-+#( )>/F×𝑧
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§ Importance of air entrainment, 
𝑢n 𝑧  (fire-induced/external wind)
• Pool fire configuration
• Global equivalence ratio for the 

flame region

Flame Structure

𝜙 =
(𝑚;

- /𝑚5%
- )

(𝑀𝑊;/(𝜈5%𝑀𝑊5%))
= 𝑟<(

𝑚;
-

𝑚5%
- )

⟹ 𝜙 ≈ 𝑟<×(
�̇�!"#$

�̇�%-+×𝑌5%,%-+
)

⟹ 𝜙 ≈ 𝑟<×(
�̇�!"#$

∫?
K!(𝜌𝑢#×2𝜋𝑏)	𝑑𝑧 ×𝑌5%,%-+

)

flame control
volume𝐿!

𝜙 ≈ 0.1 over-ventilated
fire
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§ Importance of air entrainment, 
𝑢n 𝑧  (fire-induced/external wind)
• Line fire configuration
• Global equivalence ratio for the 

flame region

⟹ 𝜙 ≈ 𝑟<×(
�̇�!"#$
(

∫?
K!(𝜌𝑢#×2)	𝑑𝑧 ×𝑌5%,%-+

)

Flame Structure

flame control
volume

𝐿!𝜙 =
(𝑚;

- /𝑚5%
- )

(𝑀𝑊;/(𝜈5%𝑀𝑊5%))
= 𝑟<(

𝑚;
-

𝑚5%
- )

⟹ 𝜙 ≈ 𝑟<×(
�̇�!"#$

�̇�%-+×𝑌5%,%-+
)

𝜙 ≈ 0.1 over-ventilated
fire
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§ Importance of air entrainment 
• Fuel package experiments: wood cribs (S. McAllister & M. 

Finney, Fire Technology 2015)

Flame Structure

Under-ventilated wood crib
(flame stabilized on the outer edge of the crib, 𝜙 > 1)

Over-ventilated wood crib
(flames stabilized around individual sticks, 𝜙 < 1)
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§ Importance of air entrainment 
• Asymmetry in the entrained air flow will change the flame 

geometry

Flame Structure

𝑢#

plume

>lame

𝑢#

Symmetric

𝑢#

plume

𝑢#
>lame

Asymmetric

wind

plume

>lame

Asymmetric

𝑢# sloped
terrain
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§ Importance of air entrainment 
• Asymmetry in the entrained air 

flow will change the flame 
geometry

plume

𝑢#
>lame

𝑢#

plume

>lame

Merging of fire fronts

Flame Structure

Raposo et al., Intl. Journal of Wildland Fire 2018
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Outline

§ Introduction
§ Pyrolysis and Combustion
§ Combustion: the Thermodynamics Viewpoint
§ Combustion Chemistry
§ Flame Structure
§ Flame Effects
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Flame Effects

§ Hazards
• Transport of combustion heat and mechanisms for further 

flame spread

Ø Radiative heat transfer – flame radiation and/or particle-to-particle 
radiation

Ø Convective heat transfer – flame/plume contact
Ø Transport of firebrands – spotting

Heating
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§ Hazards
• Mechanisms for flame spread
• Radiative heat transfer

ØCritical exposure conditions for 
spread: �̇�+%1(( > 𝐶𝐻𝐹  to achieve 
ignition conditions

ØPoint source model

Fuel

�̇�𝒓𝒂𝒅((

Hot gas
Region

Fuel
air

D

Diffusion
Flame

Flame Effects

�̇�+%1(( =
(𝜒+%1×�̇�!-+#)

4𝜋𝑑=
×cos(𝜃)

𝜒+%1 = (�̇�+%1/�̇�!-+#)	~	0.3S

T

n
rST

θ
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§ Hazards
• Mechanisms for flame spread
• Radiative heat transfer

Ø Radiative power of the flame/plume 
(i.e. value of 𝜒+%1) determined by 
chemical composition of the gas: 
CO2, H2O, and soot particles

Fuel

�̇�𝒓𝒂𝒅((

Hot gas
Region

Fuel
air

D

Diffusion
Flame

Soot

Soot

Flame Effects
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§ Hazards
• Mechanisms for flame spread
• Convective heat transfer

ØCritical exposure conditions for 
spread: 𝑇 > 𝑇)*+,	~	600	K	 to 
achieve ignition conditions

Hot gas
Region

Fuel
air air

D

Fuel�̇�𝒄𝒐𝒏𝒗((

Diffusion
Flame

Flame
contact

Flame Effects
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§ Hazards
• Mechanisms for flame spread
• Transport of firebrands

ØCritical exposure conditions for 
spread: �̇�#&3#+'

(( > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  to 
achieve ignition conditions

Fuel

Diffusion
Flame

Hot gas
Region

Fuel
air

D

Firebrands

Flame Effects
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§ Hazards
• Emissions of chemical species that may 

have a negative impact on 
human/environment/climate systems
Ø Fire smoke contains toxic chemical species: 

CO, HCN, fine particulate matter (PM2.5), etc
Ø Fire smoke contains atmospheric pollutants: 

CO, NO/NO2, PAHs, particulate matter, etc
Ø Fire smoke contains greenhouse gases: CO2, 

CH4, N2O, etc

Flame Effects
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§ Hazards
• Emissions of chemical species that may 

have a negative impact on 
human/environmental health
Ø Fire-smoke-exposed region: not well 

understood
– High-temperature combustion chemistry 
– Plume dynamics
– Low-temperature atmospheric chemistry

Flame Effects
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Conclusion

§ The basic physical concepts used to describe 
combustion phenomena have been introduced
• Scope of discussion

Ø Solid fuel (vegetation biomass)
Ø Flaming combustion
Ø Non-premixed flame
Ø Buoyancy-driven flame
Ø Turbulent flame
Ø No wind and flat terrain conditions
Ø Non-spreading flame
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Conclusion

• Flame structure
Ø Global combustion equation
Ø Over-ventilated vs under-ventilated fire conditions
Ø Combustion chemistry (Arrhenius model); infinitely fast chemistry 

assumption; rate of combustion controlled by mixing of Fuel/O2; 
flame structure described by mixture fraction variable

Ø Flame height as the characteristic length scale of the combustion 
region; correlations for flame height

Ø Mechanisms for flame spread: convective heat transfer; radiative 
heat transfer (importance of soot particles); firebrands

Ø Emissions of chemical species: toxic chemical species, atmospheric 
pollutants, greenhouse gases
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Further Reading

• Fundamentals of compartment 
fire dynamics
Ø Karlsson B., Quintiere J.G., 

Enclosure Fire Dynamics, CRC 
Press LLC, 2000

Ø Drysdale D., An Introduction to 
Fire Dynamics, 3rd , Wiley, 2011

Ø Quintiere J.G., Fundamentals of 
Fire Phenomena, Wiley, 2006
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Further Reading

• Fundamentals of wildland fire 
behavior
Ø Finney M., McAllister S., Grumstrup T., 

Forthofer, J., Wildland Fire Behavior - 
Dynamics, Principles and Processes, 
CSIRO Publishing, 2021


