Automated Wildfire Forecasting in the Continental US

Funded by California Energy Commission (CEC# EPC-18-026) and US National Institute of Standards and Technology (70NANB20H118)

YREGENCE[®]

WREGENCE Consortium Working Groups Spatial Informatics Group PRINCIPAL INVESTIGATOR (PI) & PROJECT MANAGER (PM) WG1 WG2 WG3 WG4 UNIVERSITY OF CALIFORNIA Berkeley **券UCAR** ()MERCED REAX EXTREME WEATHER FIRE BEHAVIOR SHORT TERM FORECAST LONG TERM FORECAST (Pyrecast) Janice Coen Scott Stephens Chris Lautenberger Leroy Westerling **YREGENCE**

Weather Inputs

Γ		Model	Resolution		Forecast	Cycles /	Native quantities	Derived quantities
Weather	5		Spatial	Temporal	duration	day	Native qualitities	Derived quartities
	Ĕ [High Resolution Rapid Refresh (HRRR)	3 km	1 hr	2 day	4	Relative humidity, temperature,	Fosberg Fire Weather Index, Hot Dry
	Vea	North American Mesoscale Model (NAM)	3 km	1 hr	2.5 day	4	precipitation, solar fluxes, wind speed,	Windy Index, dead fuel moisture by size
	> [Global Forecast System (GFS)	0.125 º	1-3 hr	16 day	4	wind direction, wind gust	class, NFDRS indices
		Real Time Mesoscale Analysis (RTMA)	2.5 km	hourly	Real time	-	Same as above	Live fuel moisture (herbaceus & woody)

Wind gust (native quantity)

Fine dead fuel moisture (derived quantity)

Computational Models

Ensemble Fire Forecasts

- Multiple simulations are run with model inputs perturbed from baseline values, *e.g.*
 - Wind speed and direction
 - Fuel moistures
 - Spotting parameters
- Animation to the right is a series of 24-hour fire spread forecasts condensed to 2 seconds
- Fires size percentiles are determined from modeled fire area at end of forecast period

Eulerian Level Set Method

• ϕ field is calculated by numerically integrating a hyperbolic PDE of the form:

$$\frac{\partial \phi}{\partial t} + U_x \frac{\partial \phi}{\partial x} + U_y \frac{\partial \phi}{\partial y} = 0$$

- U_x and U_y are calculated using the Rothermel model and Huygens principle more later
- Fire front spreads only in direction perpendicular to itself as given by the unit normal vector \hat{n} :

$$|\nabla\phi| = \sqrt{\left(\frac{\partial\phi}{\partial x}\right)^2 + \left(\frac{\partial\phi}{\partial y}\right)^2}$$
$$\hat{n} = \frac{1}{|\nabla\phi|} \left(\frac{\partial\phi}{\partial x}\hat{i} + \frac{\partial\phi}{\partial y}\hat{j}\right) = n_x\hat{i} + n_y\hat{j}$$

17

Rothermel Surface Spread Model (1972)

• For \sim 50 years, has been used to calculate surface fire spread rate in the US. Used by all 2D operational fire spread models in the US

$$V_{s} = \frac{I_{R}\xi(1 + \varphi_{w} + \varphi_{s})}{\rho_{b}\varepsilon Q_{ig}}$$

$$V_{s}: \text{ Surface fire spread rate (m/s)}$$

$$I_{R}: \text{ Reaction intensity (kW/m^{2})}$$

$$\xi: \text{ Propagating flux ratio (-)}$$

$$\phi_{w}: \text{ Wind coefficient (-)}$$

$$\phi_{b}: \text{ Solid extra struct}}$$

$$V_{s} = \frac{I_{R}\xi(1 + \varphi_{w} + \varphi_{s})}{\rho_{b}\varepsilon Q_{ig}}$$

$$Figure 3. -Schematic of wind-driven fire.$$

$$V_{ind} = \frac{V_{ind}}{V_{ind}}$$

$$V_{ind} = \frac{V_{ind}}{V_{ind}}$$

hass transport

Internal radiatio & convection

18

 ϕ_w : Wind coefficient (-) $\phi_{\rm s}$: Slope coefficient (-) $\rho_{\rm h}$: Bulk density (kg/m³)

Elliptical Dimensions

- Since Rothermel only gives spread rate in the direction of maximum spread, mathematical properties of ellipses are used to infer spread rate in other directions
- This is called Huygens principle, originally applied to light propagation
- Every point along the fireline behaves as an independent elliptical wavelet

