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Faster-Than-Real-Time Fire Forecasting

Outline
+ Data Science Background

Fire Forecasting Background

+
+ Improving Faster-Than-Real-Time Fire Forecasting
+ Emerging Concepts

+

Conclusions
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Data Science Background

+ Key Definitions
+ Types of Data
+ Data Assimilation

+ Machine Learning
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Key Definitions in Data-Driven Modeling

+ Atrtificial Intelligence

— Focuses on making decisions based on data ARTIFICIAL INTELLIGENCE

Programs with the ability to
learn and reason like humans

+ Machine Learning
— Form of applied statistics to estimate complicated functions

~ Set of tools to develop correlations and identify trends in data MACHINE LEARNING
Algorithms with the ability to learn

without being explicitly programmed

+ Neural Networks / Deep Learning

— Uses a high number of free parameters to develop correlations

DEEP LEARNING
— High complexity makes it difficult to track why a prediction is made Subset of machine learning
in which artificial neural
networks adapt and learn
from vast amounts of data

+ Data Assimilation

— Approximation of the true state of a random variable by combining

data/observations with a model predictions in a specific scenario _ _ o
R. Nuzzi, G. Boscia, P. Marolo, F. Ricardi, The Impact of

Artificial Intelligence and Deep Learning in Eye Diseases: A
doi:10.3389/fmed.2021.710329.
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Types of Data — Quantity Types

Data Types

Qualitative / Quantitative
Categorical / Numerical

: Nominal Continuous Discrete
(331'?5(;) (not (can be (can’t be
ordered) divided) divided)

Example:
Number of
Occupants

Example: Example: Example:
Test grade Fuel Model Wind Speed

9 | Copyright © 2023 Jensen Hughes. All rights reserved.
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Types of Data — Geospatial Types

Structured

Political/Administrative
Boundaries
(0. Do czddes, cty limeds, paltxy

Elevation

" Real World

https://guides.lib.uw.edu/research/gis
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Unstructured

# 'Fire' & "Wildfire' Tweet 5;?;0;"#,. =R 130
|5 &

Q

‘ (-

Z. Wang, X. Ye, M.H. Tsou, Spatial, temporal, and
content analysis of Twitter for wildfire hazards, Nat.
Hazards. 83 (2016) 523-540. jensenhughes.com



Data Assimilation Background — Traditional Modeling Without Data Assimilation

Current State

Estimate Ne::tt State
~ Estimate
xn,n i
Pun n+1n
pn+ 1n
. Predict L R
(Dynamic Model)

) ’ ) -

Uncertainty in

Increase in Uncertainty from:
Initial Conditions

* Propagation of Initial Uncertainty
* Model Uncertainty

https://www.kalmanfilter.net/kalmanld.htmi Jensenhughes.com
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Data Assimilation Background — State Estimation

Prior Estimate

.

I” n—1
pn n—1

Current State

Estimate
E1|r1,:rt
pn.n
>
State Update >

Measurement
Z. >
rﬂ.

f—1

Reduce uncertainty by
fusing prior state estimate
and measurement

https://www.kalmanfilter.net/kalmanld.htmi Jensenhughes.com
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Data Assimilation — Ensemble of States

Assimilation Assimilation
step step

Ensemble of state estimates time Ensemble of state estimates
prior to assimilation after assimilation

J.W. Labahn, H. Wu, S.R. Harris, B. Coriton, J.H. Frank, M. Inme, Ensemble Kalman Filter for Assimilating Experimental Data into
Large-Eddy Simulations of Turbulent Flows, Flow, Turbul. Combust. 104 (2020) 861-893. d0i:10.1007/s10494-019-00093-1.
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Fundamental Concepts of Machine Learning

Learning Algorithms

+ Formal definition

A computer program is said to learn from

experience E with respect to some class of M Ac H I N E

tasks T and performance measure P, if its

performance at tasks in T, as measured by P, LEA R N | N G

improves with experience E. — Mitchell 1997

+ Following slides provide examples of tasks,
performance measures, and experience

Image hosted by: WittySparks.com | Image source: Pixabay.com

https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08

16 | Copyright © 2023 Jensen Hughes. All rights reserved.

jensenhughes.com


https://www.deeplearningbook.org/

Fundamental Concepts of Machine Learning

Tasks
1. Classification What type of hazard?
Identify type of items What type of object?
What type of report?
2 Clustering How similar are these materials?
Group similar items Which fire in the NFIRS database is the most similar to this?
What are the common characteristics of these hazards?
3. Regression What is the probability of failure?
Estimate numeric results What is the worst-case scenario?
How quickly can a space be evacuated?
4. Anomaly Detection Is this report similar to others in the training set?
Detect atypical conditions Is this equipment operation changing over time / negatively trending?
What equipment receives disproportionate amounts of maintenance?
5. Transcription Interpreting an audio signal into textual sentences
Transform unstructured data Converting images of text into textual content

Auto-generating summary text / too-long didn’t read (TLDR)

17 | Copyright © 2023 Jensen Hughes. All rights reserved. jensenhughes.com



Fundamental Concepts of Machine Learning

Experience supervised learning

. . . Input data
+ Type of experience varies between supervised and

unsupervised learning 6 o Prediction
, - SRR _. H&iER
25 apple!
+ Supervised learning S o
— Learn to predict a specific target based on input T ‘
. . | -
- Human acts as the instructor to the algorithm appies ?

unsupervised learning

+ Unsupervised learning objectives Input data § 6 ﬁ 6
. A //,v

— Determine the probability density function from which the é — 6

random samples were drawn -l éi Siaitaa 2 K K
— Identify interesting properties of the underlying - é R e o
distribution @6 Model v -

- Algorlthm acts as an instructor to the human Y. Ma, K. Liu, Z. Guan, X. Xu, X. Qian, and H. Bao, “Background augmentation

generative adversarial networks (BAGANS): Effective data generation based on
GAN-augmented 3D synthesizing,” Symmetry (Basel)., vol. 10, no. 12, 2018.
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Fundamental Concepts of Machine Learning

Ground Truth
Example Performance Measures - -
Ignition No Ignition
+ Confusion Matrix é True False
. . .. . . . . = = Positive (TP) | Positive (FP
— Shows the ratio of correct and incorrect predictions in binary classification § = e g2
= o é False True
< 'S |Negative (FN)|Negative (TN)
+ Accuracy
— Bad metric for skewed data
. (TP+TN)
~ 99% accurate by predicting NO ignition Accuracy = oo NI

+ False Negative Rate (FNR)

— Fraction of ignitions which are not detected (i.e., number of fires which reach a critical
size prior to discovery)

+ False Discovery Rate (FDR)

— Fraction of false alarms to be investigated by fire service (i.e., measure of nuisance)

19 | Copyright © 2023 Jensen Hughes. All rights reserved. jensenhughes.com



Fundamental Concepts of Machine Learning

Underfitting Appropriate capacity Overfitting
Generalization, Capacity and Regularization
+ Generalization °o®
— Ability to perform well on new, previously unseen inputs > / > s
- Difference between training and testing errors ° l
+ Capacity = = =

— Ability of a model to store information

_ . — - Training error
— High-capacity models will memorize the training set Underfitting zone| Overfitting zone ——  Qeneralization error

— Low-capacity models will fail to fit the training set

+ Regularization L /
N I Generalization gap

— Increasing the difficulty to train a model to force the system ~

to learn more robust relationships e —.e,,——,——
0 Optimal Capacity

— Objective to reduce generalization error without impacting Capacity

training error A. C. lan Goodfellow, Yoshua Bengio, “The Deep Learning Book,” MIT Press,
20 | Copyright © 2023 Jensen Hughes. All rights reserved. vol. 521, no. 7553, p. 785, 2017. jensenhughes.com

Error




Fundamental Concepts of Machine Learning

Artificial Neural Networks

21

W>
. . Xy —> y -_— Z
Massively parallel system of equations

Weights and biases are solved by the computer using

- i WiX1 + Wox, + wixz + B =
known data during training 171 272 373 y

z=f()

Perceptron/neuron: Represents a single equation Example neuron

— Trained parameters: One weight per input, and one bias

— Activation function: Remaps the raw output to capture
non-linearities

Layer: Group of neurons which are processed
simultaneously

Network Architecture: Functional form of the model, overall
system

. Output Neurons

J.L. Hodges, Predicting Large Domain Multi-Physics Fire Behavior Using Atrtificial — Learned relationships
Neural Networks, Virginia Polytechnic Institute and State University, 2018. Example Neural Network

@ Input Neurons
— (O Hidden Neurons
Calculation Direction



Fundamental Concepts of Machine Learning

Convolutional Neural Networks

+ Inputs are images

— Size: (pixels x pixels x number of channels)

+ Convolutional Layers (CNN)

— Assumes features are spatially related
— Neurons are arranged into volumetric filters

— Filters are small spatially, but extend through all

input channels

motor scooter

— Example: 5x5x3 or 10x10x3 for an RGB image

— Inputs are convolved with each filter

— Response to each filter is a measure of
importance of that feature at a pixel

22 | Copyright © 2023 Jensen Hughes. All rights reserved.

mite container ship motor scooter rd
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
- 2 ~ .
| Y’ -

grilie mushroom cherry adagascar ca
vertible agaric quirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire onglncj dead-man's-fingers currant howler monkey

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep
convolutional neural networks." Advances in neural information processing systems. 2012.




Fire Forecasting
Background

+
+
+
+

Forecast Objectives
Types of Simulations
Forecasting and Lead-Time

Physics of Flame Spread and Simplifications
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Forecast Objectives

+ Situational awareness

— Evolution over time from discrete ignition
point / current fire perimeter

— Public evacuation

— Prioritize emergency response

+ High uncertainties

— Current state (vegetation, moisture, fire
perimeter)

— Future weather (wind speed and direction)

+ Technologies

— Empirical models, physical models, data-
driven models

26 | Copyright © 2023 Jensen Hughes. All rights reserved.

Time Since Ignition (Hours)

Example Deterministic Simulated Fire Perimeter

Fire Technol. 55 (2019). d0i:10.1007/s10694-019-00846-4.

4000

3500

3000 £

Elevation (

2500

2000

1500

J.L. Hodges, B.Y. Lattimer, Wildland Fire Spread Modeling Using Convolutional Neural Networks,

jensenhughes.com



Forecasting and Lead-Time

Ignition Containment
Spread

>

Emergency Response

Positive Lead Time

Detection Start End Forecast
28 | Copyright © 2023 Jensen Hughes. All rights reserved. Duration jensenhughes.com



Simplifications

FIRE

+ Operational tools
— Empirical atmosphere, fire, and vegetation
— Fast simulations, high uncertainty in predictions

+ Research tools
— Incorporate physics in one or more formulations

— Physical atmosphere, empirical fire e BLUESKY
NCAR Il
= CAWFE, WRF-SFIRE VEGF%EALTNE W ATMOSPHERE
- Physical fire, empirical atmosphere Emphasis of different wildfire models
= FDS W. Mell, M.A. Jenkins, J. Gould, P. Cheney, A physics-based
approach to modelling grassland fires, Int. J. Wildl. Fire. 16 (2007)
— Slow simulations, lower uncertainty 1-22.

How can we use modern technology to improve these models and make accurate, faster-than-

real-time simulation possible?

32 | Copyright © 2023 Jensen Hughes. All rights reserved. jensenhughes.com



Improving Faster-Than-
Real-Time Fire Forecasting

+
+
+
+

Data Assimilation
Inverse Analysis
HPC Parallelization

Machine Learning — Surrogate Modeling
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Data Assimilation — Re-Initialization (1/2)

Restart simulation based on
observation from current perimeter

- Satellite
— Drones

— Ground personnel identified

Results

— Limits final error in forecast by
resetting to a known condition

— Does not drastically improve
forecasts

J.L. Coen, W. Schroeder, Use of spatially refined satellite
remote sensing fire detection data to initialize and evaluate
coupled weather-wildfire growth model simulations,
Geophys. Res. Lett. 40 (2013) 5536-5541.
doi:10.1002/2013GL057868.

34 | Copyright © 2023 Jensen Hughes. All rights reserved.

2 EXPTA (22N, (Sl AT
e~ W W kel o g
B ) = b N L I ‘
& : R
> ‘ 1
1903 7: 226 38.0 :
337 j AN ) ) #ﬂ,:_‘/z,(g)
' S )
& o L EXPTB [( 205 ¢ /
g _228¢ > L Vel ‘ ) ie
S8 £ e U “v“’ |
§ E >~119 D } 2
T73 226 38.0 : : ;
§_ 3 %{km) 33.7 ‘ h)||
YIS & SO
S .
&3 -, p EXPTC [0 /f
E E ' : S h]\‘wa’,w
2 1 |
> f
119 4 ;'7 ~
Little Bear Fire 73 x(km) 226 380 |5 j)
Purple: VIIRS Fire detection polygon T
Red: simulated fire perimeter BBy
]
. >
Time 11.9 ; ;
I I | 73 x(km) 226 38.0
Vjun 8 2031 UTC V'Jun 90857 UTC ¥ jun 92014 UTC Jun 10 0833 UTC

jensenhughes.com



Data Assimilation — Re-Initialization (1/2)

2XTP
SC =
2XTP+ FN + FP
a)
0.8 Performance re-
0. — !nltlallzed at 12-hr
0.6 intervals
;% 0.5
- 04
0.3
0 \ Performance
- Initialized at t=12 hr
0.1
0
0 50 100 150
Fire duration (h)
, A. Cardil, S. Monedero, J. Ramirez, C.A. Silva, Assessing and
N reinitializing wildland fire simulations through satellite active fire data, J.
— KM \ Each color is a different 12- Environ. Manage. 231 (2019) 996-1003.
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Data Assimilation — Ensemble Filter (1/2)

Forward model
Level-set based fire spread simulator

-'1"-'1':-1_:(13'1-1]I = Ift

g ppepepegese Forecast

_ _ ! M forecast 1 fire front at t
+ Observations fused with ensemble : i S— -

state estimate e Pl | ——r@\fwmki x!,=Gfp0).d in [1N]

+ Ensemble of empirical weather
forecasts used to propagate fire front

Analysis fire
front at t-1

|+
Covariance Compare simulation
ensemble estimate and observation Observed fire
P‘li:e d-t — Fut _ H‘[:Ift) front at t
Y= (. i [1LN;]
- ) ¥
M.C. Rochoux, S. Ricci, D. Lucor, B. Cuenot, A. Trouvé, Towards Solve Inverse Problem
predictive data-driven simulations of wildfire spread - Part |: Reduced- EnKF alooritl
cost ensemble Kalman filter based on a polynomial chaos surrogate : gort —™
model for parameter estimation, Nat. Hazards Earth Syst. Sci. 14 (2014) X=x T Ktedl Analvsis fire

2951-2973. d0i:10.5194/nhess-14-2951-2014.

front at t
E X% = (Iif;}:if}s 1in [1.Ng]
analysis 1 ? i
analysis k
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Data Assimilation — Ensemble Filter (2/2)

Forecasted perimeter with
assimilation

Observations (not
assimilated on right)

y [m]

0.5

0 04 08 12 18 2 24 28 32
x [m]

(a) Analysis time, t, =78s.

Assimilation Time Step Forecasted perimeter with
no data assimilation

Forecasted Time Step

M.C. Rochoux, S. Ricci, D. Lucor, B. Cuenot, A. Trouve, Towards predictive data-driven simulations of wildfire spread - Part |: Reduced-cost ensemble
Kalman filter based on a polynomial chaos surrogate model for parameter estimation, Nat. Hazards Earth Syst. Sci. 14 (2014) 2951-2973.

doi:10.5194/nhess-14-2951-2014.
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Data Assimilation — Re-Initialization & Ensemble Filter Summary

+ Both approaches can limit the propagation of error over time in wildfire forecasts

+ Adds some computational overhead to fully empirical models, but much less than coupling with a
weather model

+ Straightforward approach to integrate structured data (e.g., fixed weather stations, satellite data, etc.)

+ Limitations
— Data acquisition
= Potential for occlusion of remote sensing

= Not straightforward to integrate unstructured data (drones, fire service perimeters, crowd sourced data)

— Accuracy
= Does not address the accuracy of the forecast itself, just resets the perimeter periodically

» Inherits same accuracy limitations due to uncertainties in the rate of spread calculation and weather forecast
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Inverse Analysis (1/3)

+ Use observed fire perimeters to reduce uncertainty in
model input parameters

+ Does not (always) update the fire perimeter directly
+ Split input parameters into two groups:

— Fixed parameters — Assumed to be known and not
optimized

— Free parameters — Assumed to be unknown and
included in the optimization.

= Generally assumed to be invariant in time f ' ~ AN & |

: ";‘L,'"‘n‘ kT : % "' Z‘ 4 S ‘ ; X . pukmy . b "

Comparison of target perimeters (yellow) with

— Forecast generated with an ensemble of free model forecasts after inverse analysis (red).
parameter sets

+ Optimization

— Forecast compared to observation at available times C. Lautenberger, Wildland fire modeling with an Eulerian level set
. o method and automated calibration, Fire Saf. J. 62 (2013) 289—
— Free parameters established based on minimum 298. doi:10.1016/j.firesaf.2013.08.014.
error
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Inverse Analysis (2/3)

+ Mixing data assimilation and inverse analysis I No assimilation and no |
| parameter updates I
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C. Zhang, A. Collin, P. Moireau, A. Trouvé, M.C. Rochoux, State-parameter estimation approach for data-driven wildland fire spread
modeling: Application to the 2012 RxCADRE S5 field-scale experiment, Fire Saf. J. 105 (2019) 286—2909.
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Inverse Analysis (3/3)

+ Approach can limit the propagation of error over time in wildfire forecasts
+ Approach can potentially reduce uncertainty in forecast by reducing input parameter uncertainty

+ Adds some computational overhead to fully empirical models, but much less than coupling with a
weather model

+ Straightforward approach to integrate structured data (e.g., fixed weather stations, satellite data, etc.)
+ Limitations
— Data acquisition
= Potential for occlusion of remote sensing
= Not straightforward to integrate unstructured data (drones, fire service perimeters, crowd sourced data)
— Accuracy
= Assumes the free parameters are invariant over the forecast window
= Assumes the errors are due to inaccurate inputs rather than not-included physics
= Limited case shows forecast error steadily increases.

= Has only been validated on small duration fires.
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HPC Parallelization (1/3)

+ IRIS Project (Greece)
- WRF-SFIRE implementation

+ Case Study
— Deterministic simulation

— Spatial domain
= Weather mesh 1km x 1km cells ~150 km x 150 km domain
= Fire 1501x1501 cells ~0.1km resolution

— Positive lead time
=  24-hour forecast
= 1 hour of real-time

= 200 cores

T.M. Giannaros, V. Kotroni, K. Lagouvardos, IRIS-Rapid response fire spread forecasting
system : Development, calibration and evaluation, Agric. For. Meteorol. 279 (2019) 107745.
doi:10.1016/j.agrformet.2019.107745.

Final perimeter comparison
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HPC Parallelization (2/3)

+ WRFX Project
- WRF-SFIRE implementation

+ Case Study
— Deterministic simulation

— Spatial domain

=  Weather mesh 0.33-0.55km cells 20-90 ks domain
= Fire ~600-3000 x 600-3000 cells

= 0.028km-0.033km resolution
— Positive lead time

= 36-84-hour forecast

= 4-6 hours of real-time

= 196 cores

1

{ integrated PM, 5 [a/m?]

< im} ® = demo.openwfm.org

University of Utah Fire Modeling Group

Catalog Pole Creek 09.16 00Z
-V / S

Active domain A /' ,5 /
Xy ;°;;;n b
s eyt Y .
P o= PO
PRRr Aoy A b f /, ///4‘ « 4 ‘amoﬁi;on
DY | [/ f /S A el s :
NN [ f f /s, s 4748
¢ (RAEE R k4 / f\ 4 7z 4 {} ‘
(O f A 1o L A 4@//4
¢ «c I 4H «| 7 /] i 4 / / / @ A,
1 & ¢ § e /)’// x_!; *mm/ ////, b >
' ., ¢ 7 [T YT {1/ > 7~
lfl.nff//(/f .. s b l
ot o+ Lk
'Huff"t//]/“/ LR :
ot 1t st A 1 1 e '
'-‘f §<2f T"} / / / ; N & Y.,
gt BB & ! £ ; o e
0.8 T ¢t ¢ ¢ %-~4’~; ; / ”‘ 7/
0 i f ;'.;*~ -":. 71 1 Lol —ris A
0.6 Yy X t/t BS ,r‘j'd'r‘;"‘a‘éx“!,'  n g AT IR AY
NIy, . ‘ AN AL a2
(WS PRy WAYRE e . SO =
Wty Y ez 2 0 o NN i s
Simulated fire perimeter and PM2.5 concentration

J. Mandel, M. Vejmelka, A. Kochanski, A. Farguell, J. Haley, D. Mallia, K. Hilburn, An interactive data-driven HPC system for

43 |

forecasting weather, wildland fire, and smoke, Proc. Urgent. 2019 1st Int. Work. HPC Urgent Decis. Mak. - Held Conjunction with
SC 2019 Int. Conf. High Perform. Comput. Networking, Storage Anal. (2019) 35-44. doi:10.1109/UrgentHPC49580.2019.00010.
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HPC Parallelization (3/3)

+ Faster-than-real-time simulation is possible with physical atmosphere model and empirical fire model

+ Limitations
— Domain size
= Current studies limited to 1500-3000 grid cells in each direction in the fire domain
= Need ~100m resolution for large fires without complex canyons, valleys, etc. (150-300km)
= Need ~30m resolution with complex terrain (45-90km)
— Cores required
= ~200 cores per 24 hours of positive lead time per simulation (not a linear function)
= Limiting factor for broader use with ensembles of weather forecasts, multiple fire locations, etc.
— Accuracy
= Known use cases of WRF which underpredict local flow velocities in complex terrain

= Fire forecast accuracy limited due to high uncertainties in the rate of spread calculation
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Machine Learning — Surrogate Modeling (1/3)

+ Front-load simulation time prior to an event

— Develop database of fire simulations using a high-resolution modeling tool

— Train a machine learning model to approximate the high-resolution modeling tool
+ During an event

— Rapid predictions using machine learning-based surrogate

; Simulation CNN 10| e

N — __-—-'-—‘-——--.__

Fuel Model 24 b S N

u —_— 0.8 ==z

Crown Ratio > = o
Ganopy Height Probability of 18 506
. . — Not Fire g (% —— F-Measure
anopy Cover
— 10T 0.4 —-—- Precision
100-Hour MOIStUre ey, 0.0 ———— Sensitivity
10-Hour MOISIUIE oy . | | 6 S R A CVSs
. . onvolutiona
1-Hour Moisture > Neural Network ‘ 0.0 12 18 24
Live Woody Moisture
0 Hours
Live Herbaceous Moisture ___y,
Probability of

North Wind >
East Wind >

Elevation >
Initial Burn Map

Fire

—lp

Hodges, Jonathan L., and Brian Y. Lattimer. "Wildland fire spread modeling using convolutional neural networks." Fire technology 55.6 (2019): 2115-2142.
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Machine Learning — Surrogate Modelling (2/3)

+ Adaptation to long-short
term memory (LSTM) ' 3,
neural networks o »/ >N\ / == t =000

t =014
Inputs to the model Tt = 029

include the state at ' — e OO
multiple previous time
steps

Front Classification Front Regression Scar Classification Scar Regression

-0.6

J. Burge, M. Bonanni, M. Inme, L. Hu, Convolutional LSTM Neural Networks far huoh
Modeling Wildland Fire Dynamics, (2020). http://arxiv.org/abs/2012.06679.  J¢T5¢THHgnes.com
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Machine Learning — Surrogate Modeling (3/3)

+ Simulation times significantly lower than traditional empirical and physics-based models
— Can evaluate probabilistic weather scenarios to generate ensembles

— Can be used as the forecast model in data assimilation-based approaches

+ Limitations
— Applicability
= Based on the range of parameters included in the training dataset
= Extrapolation beyond range of parameters does not work well

= Can be difficult to determine if a new scenario is applicable due to the high number of variables

— Accuracy

= Surrogate model cannot be more accurate than the model used to develop the database

47 | Copyright © 2023 Jensen Hughes. All rights reserved. jensenhughes.com



Emerging Concepts

+ Machine Learning — Independent Modeling

+ Machine Learning — Physics Informed Modeling
+ Model Validation

jensenhughes.com




Machine Learning — Independent Modeling

+ Redesign network to use remote sensing e TR g " Ty | B
! mask 1 7 o
data as inputs ol = e o 3 o
Limitations it . - - g
— Error propagation mask | M- - J ] ’ -
= Builds on remote sensing data products -
= Error in underlying products propagates to | N - i;
Fire = # M
model mask - |
— Data availability -
= QOcclusion can affect data availability during P'EEU - - — -
an event - - =
a S
» |mpacts of human intervention (e.g., - ;— S ®
suppression, fire breaks, etc.) not well e ‘# E i — ._'_;r ’
characterized in datasets mask -- ~ 4 1
= Limited to aerial observable data, which has & _
limited correlation with surface state Predicted - J "
fire
mask
e o

49 | F. Huot, R.L. Hu, N. Goyal, T. Sankar, M. lnme, Y.F. Chen, Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire
Spreading From Remote-Sensing Data, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1-13. doi:10.1109/TGRS.2022.3192974.



Machine Learning — Physics Informed (1/4)

+ Coarse model predictions as inputs to the model

— Geometry and mean flow properties can be represented as a vector of model inputs (high level
descriptions)

— Spatially resolved thermal flow field can be represented as a series of 2-D slices (image
channels)

— Calculate spatially resolved intensive properties from rapid coarse predictions

800

O
Width ) Temperature 700 oq_)
Length Zone Fire Pressure 600 =
Heiaght Simulation Ventilation .=

Upper Layer Temperature Transpose > g

: Lower Layer Temperature - 400
\ZVIdth Interface Height Convolutional Q.
ength 300 &
(S

Height Upper Layer Mass Flow Rate Neural
Number Lower Layer Mass Flow Rate

Location Neutral Plane Height
Spatially resolved temperature

Intensity
Location
and velocity predictions

50 | J-L.Hodges, B.Y. Lattimer, K.D. Luxbacher, Compartment fire predictions using transpose convolutional neural jensenhughes.com
networks, Fire Saf. J. 108 (2019) 1-22. doi:10.1016/}.firesaf.2019.102854.
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Machine Learning — Physics Informed (2/4)
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+ Left image is the neural network prediction

+ Middle image is the CFD prediction
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+ Right image is the discrete probability density function of error
between the two

+ Contours are scaled the same
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51 | J-L.Hodges, B.Y. Lattimer, K.D. Luxbacher, Compartment fire predictions using  Neural Network
transpose convolutional neural networks, Fire Saf. J. 108 (2019) 1-22.
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Machine Learning — Physics Informed (3/4)

+ Physics-informed neural networks (PINN)
— Model predicts a state variable based on inputs
» Level-set solution in this example

— Embeds a conservation equation in the loss calculation
PINN

Neural network

PDE

Oit/0x

:
l

FNN ———

~ i, A o ou]"
SR CD e I

Ot/ Ot

X

T
\
/

J.J. Dabrowski, D.E. Pagendam, J. Hilton, C. Sanderson, D. MacKinlay, C. Huston, A. Bolt, P. Kuhnert, Bayesian
s2 | Physics Informed Neural Networks for Data Assimilation and Spatio-Temporal Modelling of Wildfires, Spat. Stat. 55 jensenhughes.com
(2023) 100746. doi:10.1016/j.spasta.2023.100746.



Machine Learning — Physics Informed (4/4)
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Model Validation

+ Fire Dynamics Simulator — Wildfire Rate of Spread + Presents statistical analysis of model performance
based on 6 datasets including 354 fire rate of

— Describes each experiment used in the validation
spread measurements

— Describes specific notes for the modeling effort L
+ Expresses model performance as a systematic bias

— Source code for the software and input files for and error standard deviation
validation publicly available

3.12 CSIRO Grassland Fires

T T T
o ) o Rate of Spread s
In July and August of 1986, the Commonwealth Scientific and Industrial Research Organisation {CSIRO) s/ /
of Australia conducted controlled grassland fire experiments near Darwin, Northern Territory [152]. July Exp. Rel. Std. Dev.: 0.10 2
and August are in the middle of the dry season when the grasses are fully cured (dried) and the weather is 1 F Model Rel. Std. Dev.: 0.50 Ve // . .-
warm and dry. The experiments were conducted on flat plots measuring 100 m by 100 m, 200 m by 200 m, . . s
or 200 m by 300 m. Two cases have been simulated. Case C064 was conducted on a 100 m by 100 m plot Model Bias Factor: 0.9 / // 7 /:/
of kerosene grass ( Eriachne burkittii); Case F19 was condueted on a 200 m by 200 m plot of kangaroo grass 7 // Vs
(Themeda australis). Y A
- = s I
i /

Modeling Notes E N 2 Zz9
Two of these experiments were originally simulated with FDS by Mell et al. [153]. These simulations = 0.1 r / 1
modeled the grass as a collection of cylindrical Lagrangian particles. The pyrolysis model assigned to the <] Y a /S
particles is described in the FDS User's Guide [1], chapter “Earth, Wind and Fire.” Section 191, “Thermal % A ‘) N
Degradation Model for Vegetation.” '45 A A 7 P A

Now these two experiments are also simulated using the Boundary Fuel Model (BFM) [154] and the L / A, 7Yy
Rothermel-Albini fire spread algorithm [155, 156]. For the experiment labelled Case C064, fuel index 1 QCZ /AR » Al
(Short Grass) is used, with a modified moisture fraction of 0.063. For F19. fuel index 3 (Tall Grass) is used, - A“//‘ LA A, A
with a modified moisture fraction of (.058. - .;B 4 “al o, ar :‘ A y

Measured properties for the specific types of grasses burned in the two experiments are listed in Ta- - .é) 0.01 : {4 Lasa +  CSIRO Grassland Fires
ble 3.4. Properties that were not measured are listed in Table 3.5, These assumed properties are typically for L g = N A 4 USFS/Catchpole (Coarse Excelsior)
wood or cellulosic fuels. The moisture is modeled as water. The grass is assumed 1o be composed primarily A~ v A‘// /‘/ SoA . 4 USFS/Catchpole (Pine Needles)
of cellulose. s . .

Snapshots of the Lagrangian particle simulation of Case FI19 is shown in Fig. 3.7. The computational / // 4 Y 7o A USFS/Catchpole (Pine Sticks) .
domain in this case is 240 m by 240 m by 20 m, The grid cells are (.5 m cubes, The domain is subdivided // y 4 USFS/Catchpole (Regular Excelsior)
into 36 individual meshes and run in parallel. The grass is represented 1 simulated blade per grid cell. The // v 4 USFS/Corsica
radius of the cylinder is derived from the measured surface area to volume ratio. Each simulated blade of 0.001 A . ) |
grass represents many more actual blades of grass. The weighting factor is determined from the measured : 0.001 0.01 01 1

bulk mass per unit area. The fires in the experiments were ignited by two men carrying drip torches walking
in opposite directions along the upwind boundary of the plot (the red strip in Fig. 3.7). In FDS, this action
was modeled using a specified spread rate along the strip Figure 3.7: Snapshots of the simulation of CSIRO Grassland Fire F19 compared to photographs of the fire.

Measured Rate of Spread (m/s)
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Conclusions

+ Several approaches exist for faster-than-real-time
forecasts of wildfires

— Different pros and cons with each approach

— Data can be used to improve operational forecasts in
several ways

+ Looking to the future

— Increasing need for accurate data collection and
scenario reconstruction methodologies

— Common databases are needed to train, and to
benchmark developed models
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