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1 + Key Definitions

+ Types of Data

+ Data Assimilation

+ Machine Learning

Data Science Background
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+ Artificial Intelligence

− Focuses on making decisions based on data

+ Machine Learning

− Form of applied statistics to estimate complicated functions

− Set of tools to develop correlations and identify trends in data

+ Neural Networks / Deep Learning

− Uses a high number of free parameters to develop correlations

− High complexity makes it difficult to track why a prediction is made

+ Data Assimilation

− Approximation of the true state of a random variable by combining 

data/observations with a model predictions in a specific scenario

Key Definitions in Data-Driven Modeling

R. Nuzzi, G. Boscia, P. Marolo, F. Ricardi, The Impact of 

Artificial Intelligence and Deep Learning in Eye Diseases: A 

Review, Front. Med. 8 (2021) 1–11. 

doi:10.3389/fmed.2021.710329.
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Types of Data – Quantity Types

Data Types

Qualitative / 
Categorical

Ordinal 
(ordered)

Example: 
Test grade

Nominal 
(not 

ordered)

Example: 
Fuel Model

Quantitative 
/ Numerical

Continuous 
(can be 
divided)

Example: 
Wind Speed

Discrete 
(can’t be 
divided)

Example: 
Number of 
Occupants
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Types of Data – Geospatial Types

https://guides.lib.uw.edu/research/gis

Structured

Z. Wang, X. Ye, M.H. Tsou, Spatial, temporal, and 

content analysis of Twitter for wildfire hazards, Nat. 

Hazards. 83 (2016) 523–540. 

Unstructured
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Data Assimilation Background – Traditional Modeling Without Data Assimilation

https://www.kalmanfilter.net/kalman1d.html

Uncertainty in

Initial Conditions

Increase in Uncertainty from:

• Propagation of Initial Uncertainty

• Model Uncertainty
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Data Assimilation Background – State Estimation

https://www.kalmanfilter.net/kalman1d.html

Reduce uncertainty by 

fusing prior state estimate 

and measurement
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Data Assimilation – Ensemble of States

J.W. Labahn, H. Wu, S.R. Harris, B. Coriton, J.H. Frank, M. Ihme, Ensemble Kalman Filter for Assimilating Experimental Data into 

Large-Eddy Simulations of Turbulent Flows, Flow, Turbul. Combust. 104 (2020) 861–893. doi:10.1007/s10494-019-00093-1.

Ensemble of state estimates 

prior to assimilation
Ensemble of state estimates 

after assimilation
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Learning Algorithms

+ Formal definition

+ Following slides provide examples of tasks, 

performance measures, and experience

Fundamental Concepts of Machine Learning

A computer program is said to learn from 

experience E with respect to some class of 

tasks T and performance measure P, if its 

performance at tasks in T, as measured by P, 

improves with experience E. – Mitchell 1997

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016. See the Deep 

Learning book freely available online for more detail on these topics: https://www.deeplearningbook.org/

https://towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08

https://www.deeplearningbook.org/
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Tasks

Fundamental Concepts of Machine Learning

1. Classification
    Identify type of items

What type of hazard?

What type of object?

What type of report?

2. Clustering
    Group similar items

How similar are these materials?

Which fire in the NFIRS database is the most similar to this?

What are the common characteristics of these hazards?

3. Regression
    Estimate numeric results

What is the probability of failure?

What is the worst-case scenario?

How quickly can a space be evacuated?

4. Anomaly Detection
    Detect atypical conditions

Is this report similar to others in the training set?

Is this equipment operation changing over time / negatively trending?

What equipment receives disproportionate amounts of maintenance?

5. Transcription
    Transform unstructured data

Interpreting an audio signal into textual sentences

Converting images of text into textual content

Auto-generating summary text / too-long didn’t read (TLDR)
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+ Type of experience varies between supervised and 

unsupervised learning

+ Supervised learning

− Learn to predict a specific target based on input

− Human acts as the instructor to the algorithm

+ Unsupervised learning objectives

− Determine the probability density function from which the 

random samples were drawn

− Identify interesting properties of the underlying 

distribution

− Algorithm acts as an instructor to the human

Experience

Fundamental Concepts of Machine Learning

Y. Ma, K. Liu, Z. Guan, X. Xu, X. Qian, and H. Bao, “Background augmentation 

generative adversarial networks (BAGANs): Effective data generation based on 

GAN-augmented 3D synthesizing,” Symmetry (Basel)., vol. 10, no. 12, 2018.
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+ Confusion Matrix

− Shows the ratio of correct and incorrect predictions in binary classification

+ Accuracy

− Bad metric for skewed data

− 99% accurate by predicting NO ignition

+ False Negative Rate (FNR)

− Fraction of ignitions which are not detected (i.e., number of fires which reach a critical 

size prior to discovery)

+ False Discovery Rate (FDR)

− Fraction of false alarms to be investigated by fire service (i.e., measure of nuisance)

Example Performance Measures

Fundamental Concepts of Machine Learning

Ground Truth

Ignition No Ignition

M
o

d
e

l
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n

it
io

n

True

Positive (TP)

False

Positive (FP)

N
o
 

Ig
n

it
io

n

False

Negative (FN)

True

Negative (TN)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 

𝑭𝑵𝑹 =
𝑭𝑵

𝑻𝑷+𝑭𝑵
 

𝑭𝑫𝑹 =
𝑭𝑷

𝑻𝑷+𝑭𝑷
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+ Generalization

− Ability to perform well on new, previously unseen inputs

− Difference between training and testing errors

+ Capacity

− Ability of a model to store information

− High-capacity models will memorize the training set

− Low-capacity models will fail to fit the training set

+ Regularization

− Increasing the difficulty to train a model to force the system 

to learn more robust relationships

− Objective to reduce generalization error without impacting 

training error

Generalization, Capacity and Regularization

Fundamental Concepts of Machine Learning

A. C. Ian Goodfellow, Yoshua Bengio, “The Deep Learning Book,” MIT Press, 

vol. 521, no. 7553, p. 785, 2017.
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Artificial Neural Networks

+ Massively parallel system of equations

+ Weights and biases are solved by the computer using 

known data during training

+ Perceptron/neuron: Represents a single equation

− Trained parameters: One weight per input, and one bias

− Activation function: Remaps the raw output to capture 

non-linearities

+ Layer: Group of neurons which are processed 

simultaneously

+ Network Architecture: Functional form of the model, overall 

system

Fundamental Concepts of Machine Learning

𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝐵 = 𝑦
𝑧 = 𝑓 𝑦

Example neuron

Example Neural Network

J.L. Hodges, Predicting Large Domain Multi-Physics Fire Behavior Using Artificial 

Neural Networks, Virginia Polytechnic Institute and State University, 2018.
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Convolutional Neural Networks

+ Inputs are images

− Size: (pixels x pixels x number of channels)

+ Convolutional Layers (CNN)

− Assumes features are spatially related

− Neurons are arranged into volumetric filters

− Filters are small spatially, but extend through all 

input channels

− Example: 5x5x3 or 10x10x3 for an RGB image

− Inputs are convolved with each filter

− Response to each filter is a measure of 

importance of that feature at a pixel

Fundamental Concepts of Machine Learning

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep 

convolutional neural networks." Advances in neural information processing systems. 2012.
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2 + Forecast Objectives

+ Types of Simulations

+ Forecasting and Lead-Time

+ Physics of Flame Spread and Simplifications

Fire Forecasting 
Background
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+ Situational awareness

− Evolution over time from discrete ignition 

point / current fire perimeter

− Public evacuation

− Prioritize emergency response

+ High uncertainties

− Current state (vegetation, moisture, fire 

perimeter)

− Future weather (wind speed and direction)

+ Technologies

− Empirical models, physical models, data-

driven models

Forecast Objectives

Example Deterministic Simulated Fire Perimeter

J.L. Hodges, B.Y. Lattimer, Wildland Fire Spread Modeling Using Convolutional Neural Networks, 
Fire Technol. 55 (2019). doi:10.1007/s10694-019-00846-4.
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Forecasting and Lead-Time

Ignition
Spread

Emergency Response

Detection

Containment

Positive Lead Time

Start End Forecast

Duration
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+ Operational tools

− Empirical atmosphere, fire, and vegetation

− Fast simulations, high uncertainty in predictions

+ Research tools

− Incorporate physics in one or more formulations

− Physical atmosphere, empirical fire

▪ CAWFE, WRF-SFIRE

− Physical fire, empirical atmosphere

▪ FDS

− Slow simulations, lower uncertainty

Simplifications

Emphasis of different wildfire models
W. Mell, M.A. Jenkins, J. Gould, P. Cheney, A physics-based 

approach to modelling grassland fires, Int. J. Wildl. Fire. 16 (2007) 

1–22.

How can we use modern technology to improve these models and make accurate, faster-than-

real-time simulation possible?
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3 + Data Assimilation

+ Inverse Analysis

+ HPC Parallelization

+ Machine Learning – Surrogate Modeling

Improving Faster-Than-
Real-Time Fire Forecasting
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+ Restart simulation based on 

observation from current perimeter

− Satellite

− Drones

− Ground personnel identified

+ Results

− Limits final error in forecast by 

resetting to a known condition

− Does not drastically improve 

forecasts

Data Assimilation – Re-Initialization (1/2)

J.L. Coen, W. Schroeder, Use of spatially refined satellite 

remote sensing fire detection data to initialize and evaluate 

coupled weather-wildfire growth model simulations, 

Geophys. Res. Lett. 40 (2013) 5536–5541. 

doi:10.1002/2013GL057868.
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Data Assimilation – Re-Initialization (1/2)

A. Cardil, S. Monedero, J. Ramírez, C.A. Silva, Assessing 

and reinitializing wildland fire simulations through satellite 

active fire data, J. Environ. Manage. 231 (2019) 996–1003. 

doi:10.1016/j.jenvman.2018.10.115.

𝑆𝐶 =
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

Performance 

initialized at t=12 hr

Performance re-

initialized at 12-hr 

intervals

Each color is a different 12-

hr interval of observations

A. Cardil, S. Monedero, J. Ramírez, C.A. Silva, Assessing and 

reinitializing wildland fire simulations through satellite active fire data, J. 

Environ. Manage. 231 (2019) 996–1003. 

doi:10.1016/j.jenvman.2018.10.115.
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Data Assimilation – Ensemble Filter (1/2)

M.C. Rochoux, S. Ricci, D. Lucor, B. Cuenot, A. Trouvé, Towards 

predictive data-driven simulations of wildfire spread - Part I: Reduced-

cost ensemble Kalman filter based on a polynomial chaos surrogate 

model for parameter estimation, Nat. Hazards Earth Syst. Sci. 14 (2014) 

2951–2973. doi:10.5194/nhess-14-2951-2014.

+ Ensemble of empirical weather 

forecasts used to propagate fire front

+ Observations fused with ensemble 

state estimate
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Data Assimilation – Ensemble Filter (2/2)

M.C. Rochoux, S. Ricci, D. Lucor, B. Cuenot, A. Trouvé, Towards predictive data-driven simulations of wildfire spread - Part I: Reduced-cost ensemble 

Kalman filter based on a polynomial chaos surrogate model for parameter estimation, Nat. Hazards Earth Syst. Sci. 14 (2014) 2951–2973. 

doi:10.5194/nhess-14-2951-2014.

Forecasted perimeter with 

assimilation

Forecasted perimeter with 

no data assimilation
Assimilation Time Step Forecasted Time Step

Observations (not 

assimilated on right)
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+ Both approaches can limit the propagation of error over time in wildfire forecasts

+ Adds some computational overhead to fully empirical models, but much less than coupling with a 

weather model

+ Straightforward approach to integrate structured data (e.g., fixed weather stations, satellite data, etc.)

+ Limitations

− Data acquisition

▪ Potential for occlusion of remote sensing

▪ Not straightforward to integrate unstructured data (drones, fire service perimeters, crowd sourced data)

− Accuracy

▪ Does not address the accuracy of the forecast itself, just resets the perimeter periodically

▪ Inherits same accuracy limitations due to uncertainties in the rate of spread calculation and weather forecast

Data Assimilation – Re-Initialization & Ensemble Filter Summary
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+ Use observed fire perimeters to reduce uncertainty in 

model input parameters

+ Does not (always) update the fire perimeter directly

+ Split input parameters into two groups:

− Fixed parameters – Assumed to be known and not 

optimized

− Free parameters – Assumed to be unknown and 

included in the optimization.

▪ Generally assumed to be invariant in time

+ Optimization

− Forecast generated with an ensemble of free 

parameter sets

− Forecast compared to observation at available times

− Free parameters established based on minimum 

error

Inverse Analysis (1/3)

Comparison of target perimeters (yellow) with

model forecasts after inverse analysis (red).

C. Lautenberger, Wildland fire modeling with an Eulerian level set 

method and automated calibration, Fire Saf. J. 62 (2013) 289–

298. doi:10.1016/j.firesaf.2013.08.014.
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+ Mixing data assimilation and inverse analysis

Inverse Analysis (2/3)

120 second forecasts

C. Zhang, A. Collin, P. Moireau, A. Trouvé, M.C. Rochoux, State-parameter estimation approach for data-driven wildland fire spread 

modeling: Application to the 2012 RxCADRE S5 field-scale experiment, Fire Saf. J. 105 (2019) 286–299.

Shape similarity, low is better

No assimilation and no 

parameter updates

Assimilation and 

parameter updates
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+ Approach can limit the propagation of error over time in wildfire forecasts

+ Approach can potentially reduce uncertainty in forecast by reducing input parameter uncertainty

+ Adds some computational overhead to fully empirical models, but much less than coupling with a 

weather model

+ Straightforward approach to integrate structured data (e.g., fixed weather stations, satellite data, etc.)

+ Limitations

− Data acquisition

▪ Potential for occlusion of remote sensing

▪ Not straightforward to integrate unstructured data (drones, fire service perimeters, crowd sourced data)

− Accuracy

▪ Assumes the free parameters are invariant over the forecast window

▪ Assumes the errors are due to inaccurate inputs rather than not-included physics

▪ Limited case shows forecast error steadily increases.

▪ Has only been validated on small duration fires.

Inverse Analysis (3/3)
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+ IRIS Project (Greece)

− WRF-SFIRE implementation

+ Case Study

− Deterministic simulation

− Spatial domain

▪ Weather mesh 1km x 1km cells ~150 km x 150 km domain

▪ Fire 1501x1501 cells ~0.1km resolution

− Positive lead time

▪ 24-hour forecast

▪ 1 hour of real-time

▪ 200 cores

HPC Parallelization (1/3)

T.M. Giannaros, V. Kotroni, K. Lagouvardos, IRIS-Rapid response fire spread forecasting 

system : Development, calibration and evaluation, Agric. For. Meteorol. 279 (2019) 107745. 

doi:10.1016/j.agrformet.2019.107745.
Final perimeter comparison
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+ WRFx Project

− WRF-SFIRE implementation

+ Case Study

− Deterministic simulation

− Spatial domain

▪ Weather mesh 0.33-0.55km cells 20-90 km domain

▪ Fire ~600-3000 x 600-3000 cells 

▪ 0.028km-0.033km resolution

− Positive lead time

▪ 36-84-hour forecast

▪ 4-6 hours of real-time

▪ 196 cores

HPC Parallelization (2/3)

J. Mandel, M. Vejmelka, A. Kochanski, A. Farguell, J. Haley, D. Mallia, K. Hilburn, An interactive data-driven HPC system for 

forecasting weather, wildland fire, and smoke, Proc. Urgent. 2019 1st Int. Work. HPC Urgent Decis. Mak. - Held Conjunction with 

SC 2019 Int. Conf. High Perform. Comput. Networking, Storage Anal. (2019) 35–44. doi:10.1109/UrgentHPC49580.2019.00010.

Simulated fire perimeter and PM2.5 concentration
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+ Faster-than-real-time simulation is possible with physical atmosphere model and empirical fire model

+ Limitations

− Domain size

▪ Current studies limited to 1500-3000 grid cells in each direction in the fire domain

▪ Need ~100m resolution for large fires without complex canyons, valleys, etc. (150-300km)

▪ Need ~30m resolution with complex terrain (45-90km)

− Cores required

▪ ~200 cores per 24 hours of positive lead time per simulation (not a linear function)

▪ Limiting factor for broader use with ensembles of weather forecasts, multiple fire locations, etc.

− Accuracy

▪ Known use cases of WRF which underpredict local flow velocities in complex terrain

▪ Fire forecast accuracy limited due to high uncertainties in the rate of spread calculation

HPC Parallelization (3/3)
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+ Front-load simulation time prior to an event

− Develop database of fire simulations using a high-resolution modeling tool

− Train a machine learning model to approximate the high-resolution modeling tool

+ During an event

− Rapid predictions using machine learning-based surrogate

Machine Learning – Surrogate Modeling (1/3)

Hodges, Jonathan L., and Brian Y. Lattimer. "Wildland fire spread modeling using convolutional neural networks." Fire technology 55.6 (2019): 2115-2142.
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+ Adaptation to long-short 

term memory (LSTM) 

neural networks

+ Inputs to the model 

include the state at 

multiple previous time 

steps

Machine Learning – Surrogate Modelling (2/3)

J. Burge, M. Bonanni, M. Ihme, L. Hu, Convolutional LSTM Neural Networks for 

Modeling Wildland Fire Dynamics, (2020). http://arxiv.org/abs/2012.06679.
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+ Simulation times significantly lower than traditional empirical and physics-based models

− Can evaluate probabilistic weather scenarios to generate ensembles

− Can be used as the forecast model in data assimilation-based approaches

+ Limitations

− Applicability

▪ Based on the range of parameters included in the training dataset

▪ Extrapolation beyond range of parameters does not work well

▪ Can be difficult to determine if a new scenario is applicable due to the high number of variables

− Accuracy

▪ Surrogate model cannot be more accurate than the model used to develop the database

Machine Learning – Surrogate Modeling (3/3)
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4 + Machine Learning – Independent Modeling

+ Machine Learning – Physics Informed Modeling

+ Model Validation

Emerging Concepts
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+ Redesign network to use remote sensing 

data as inputs

+ Limitations

− Error propagation

▪ Builds on remote sensing data products

▪ Error in underlying products propagates to 

model

− Data availability

▪ Occlusion can affect data availability during 

an event

▪ Impacts of human intervention (e.g., 

suppression, fire breaks, etc.) not well 

characterized in datasets

▪ Limited to aerial observable data, which has 

limited correlation with surface state

Machine Learning – Independent Modeling

F. Huot, R.L. Hu, N. Goyal, T. Sankar, M. Ihme, Y.F. Chen, Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire 

Spreading From Remote-Sensing Data, IEEE Trans. Geosci. Remote Sens. 60 (2022) 1–13. doi:10.1109/TGRS.2022.3192974.
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Machine Learning – Physics Informed (1/4)

+ Coarse model predictions as inputs to the model

− Geometry and mean flow properties can be represented as a vector of model inputs (high level 

descriptions)

− Spatially resolved thermal flow field can be represented as a series of 2-D slices (image 

channels)

− Calculate spatially resolved intensive properties from rapid coarse predictions

Spatially resolved temperature 

and velocity predictions

Zone Fire

Simulation

Room Geometry

Width

Length

Height

Ventilation

Width

Length

Height

Number

Location

Source

Intensity

Location

Room Mean Properties

Temperature

Pressure

Ventilation

Upper Layer Temperature

Lower Layer Temperature
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Upper Layer Mass Flow Rate

Lower Layer Mass Flow Rate

Neutral Plane Height

T
e
m

p
e
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re

 °
C

Transpose

Convolutional

Neural

Network

J.L. Hodges, B.Y. Lattimer, K.D. Luxbacher, Compartment fire predictions using transpose convolutional neural 

networks, Fire Saf. J. 108 (2019) 1–22. doi:10.1016/j.firesaf.2019.102854.
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Machine Learning – Physics Informed (2/4)

+ Left image is the neural network prediction

+ Middle image is the CFD prediction

+ Right image is the discrete probability density function of error 

between the two

+ Contours are scaled the same

SimulationsNeural Network Error
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J.L. Hodges, B.Y. Lattimer, K.D. Luxbacher, Compartment fire predictions using 

transpose convolutional neural networks, Fire Saf. J. 108 (2019) 1–22.
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Machine Learning – Physics Informed (3/4)

+ Physics-informed neural networks (PINN)

− Model predicts a state variable based on inputs

▪ Level-set solution in this example

− Embeds a conservation equation in the loss calculation

J.J. Dabrowski, D.E. Pagendam, J. Hilton, C. Sanderson, D. MacKinlay, C. Huston, A. Bolt, P. Kuhnert, Bayesian 

Physics Informed Neural Networks for Data Assimilation and Spatio-Temporal Modelling of Wildfires, Spat. Stat. 55 

(2023) 100746. doi:10.1016/j.spasta.2023.100746.
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Machine Learning – Physics Informed (4/4)

J.J. Dabrowski, D.E. Pagendam, J. Hilton, C. Sanderson, D. MacKinlay, C. Huston, A. Bolt, P. Kuhnert, Bayesian 

Physics Informed Neural Networks for Data Assimilation and Spatio-Temporal Modelling of Wildfires, Spat. Stat. 55 

(2023) 100746. doi:10.1016/j.spasta.2023.100746.
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Model Validation

+ Fire Dynamics Simulator – Wildfire Rate of Spread

− Describes each experiment used in the validation

− Describes specific notes for the modeling effort

− Source code for the software and input files for 

validation publicly available

+ Presents statistical analysis of model performance 

based on 6 datasets including 354 fire rate of 

spread measurements

+ Expresses model performance as a systematic bias 

and error standard deviation
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Conclusions

+ Several approaches exist for faster-than-real-time 

forecasts of wildfires

− Different pros and cons with each approach

− Data can be used to improve operational forecasts in 

several ways

+ Looking to the future

− Increasing need for accurate data collection and 

scenario reconstruction methodologies

− Common databases are needed to train, and to 

benchmark developed models

Data-driven models can allow us to leverage the accuracy 

of high-fidelity simulations at the time requirements of 

operational tools
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